MSU Certification in College Teaching Institute

Creating Effective Learning Environments: Five Easy Steps to Peer Instruction

Learning goals:

- 1. Observe and describe the basic components or steps of peer instruction and the conceptual understanding behind the steps of peer instruction.
- 1. Describe the elements of good clicker questions; use these elements to analyze clicker questions; create your own clicker questions in your discipline.
- 2. Begin a plan to transform a short segment of a standard lecture into one that utilizes peer instruction and personal response.

Workshop activities:

- 1. (0-10) Worksheet Part A; Handout clickers; start with simple clicker questions. Do three. End with metacognitive clicker question
- 2. (10-20) Part of prezi on peer instruction, including videos from PI module, classroom observation;
- 3. (20-30) Worksheet Part B: The steps of peer instruction. Reasons behind peer instruction.
- 4. (30-40) Worksheet Part C: Analyze clicker questions, identify strengths and weaknesses
- 5. (40-50) Report out. Open discussion on how to improve clicker questions.
- 6. (50-60) More practice with PI: Identify a person at each table to assist in the PI process during group discussions. Run a few clicker questions, first as standard questions, then on how to interact with groups.
- 7. (60-75) Worksheet Part D: Create clicker questions in your discipline. Start with a concept or idea, write answers and distractors, analyze within the context of Bloom's Taxonomy, and rewrite towards a higher level of learning. Share with your group of three.
- 8. (70-80) Share out clicker questions created.
- 9. (80-90) Worksheet Part E: short report and then open discussion of challenges of implementation of peer instruction.

Creating Effective Learning Environments: Five Easy Steps to Peer Instruction

Part A: Introduction to clicker questions and peer-instruction.

This icon means answer as an individual. Commit to a response, express your current (pre) state of knowledge.

Articulate, debate, and revise: This icon means discuss and then agree (or sometime not) on an answer.

Let's do a few examples of clicker questions.

Now we will explore examples of peer instruction.

Part B:

Write down the steps of peer instruction that you observed in the videos.

- 1. Step One:
- 2. Step Two:
- 3. Step Three:
- 4. Step Four:
- 5. Step Five (if necessary):

Compare your steps (four or five) with those of your neighbors. Reach consensus, identify one of you to report out.

Part C: Analyze clicker questions and improving clicker questions: When writing clicker questions, it is useful practice to analyze the question in terms of three ideas:

- 1. Where in the learning cycle the question is focused? Where in your class might the question best fit, or more appropriately, what types of questions do you want to use/develop for different parts of your class's learning cycle? See learning cycle below.
- 2. What is the Bloom's Taxonomy level of the question? If it is fact checking or memorization, it is unlikely to develop deeper or conceptual understanding, and unlikely to lead to engaging student discussion. Questions at higher Bloom's levels of comprehension or analysis require students to think more, talk more, and learn more. Refer to Bloom's Taxonomy below.
- 3. **Does the clicker question contain believable distractors?** Questions that include mistaken elements of common or prior knowledge or misconceptions in the possible answers are very effective at challenging student's to overcome their commonly held, but mistaken beliefs. This is a key part of the peer instruction process requiring students to individually express an answer prior to discussion or expert solution forces them commit to a position.

On the next page are three questions. Working in groups, analyze with the criteria listed above. Think about the *kinds of discussions do these questions elicit in the students*.

Newton's Third Law (Physics)

Which of these is Newton's Third Law?

- A) For every action, there is an equal and opposite reaction.
- A body at rest remains at rest unless acted upon by an unbalanced force.
- C) The force between two bodies is proportional to their masses and inversely proportional to the square of the distance between them.
- \mathbf{p} $\mathbf{F} = \mathbf{m}\mathbf{a}$

- 1. Where might this come in the question cycle?
- 2. To what level of knowledge on Bloom's taxonomy is the question directed?
- 3. Are the distractors good? Bad? What type of discussion would this question engender?

2

Effective Peer Instruction with Clicker

Clicker question (Calculus)

Evaluate:

$$\int_0^4 x^2 \sqrt{1+x^3} \, dx$$

c)
$$\frac{2}{9}(65^{3/2}-1)$$

 $\frac{16}{9}$

$$\frac{1022}{3}$$

1. Where might this come in the question cycle?

- 2. To what level of knowledge on Bloom's taxonomy is the question directed?
- 3. Are the distractors good? Bad? What type of discussion would this question engender?

Effective Peer Instruction with Clickers

(adapted from Bruff (2009

Writing Questions #3: Revise Existing Question

What causes the seasons?

- A. The change in the earth's distance from the sunduring the year
- B. The tilt of the earths axis
- C. Changes in the sun's brightness
- D. Changes in clouds
- E. None of the above

Can we make a better question on the SAME topic? Yes...

- 1. Where might this come in the question cycle?
- 2. To what level of knowledge on Bloom's taxonomy is the question directed?
- 3. Are the distractors good? Bad? What type of discussion would this question engender?

Great, now look at different versions of the same questions, shown below. They ask the 'same' thing, but in a different way. They would be appropriate in the same places of the question cycle.

Let's analyze these version of the questions in terms of Bloom's taxonomy, the dis

Actions and Reactions (Physics)

If for every action there is an equal and opposite reaction, how does anyone win a tug-of-war?

- A) The team with the larger mass requires a greater force to get moving so it beats the team with the smaller mass.
- B) The team with better traction wins because they can push harder against the ground.
- C) The team with the larger mass has a greater inertia so it is more difficult to move and so, it wins the tug-of-war.
- D) The team with the smaller mass wins because it can get moving more quickly, pulling the heavier team forward.

1. Bloom's taxonomy?

- 2. Distractors?
- 3. What type of discussion would this question engender?

Clicker question (Calculus)

Which of the following is an incorrect step when using the substitution method to evaluate the definite integral

$$\int_{0}^{4} x^{2} \sqrt{1 + x^{3}} dx$$

$$u = 1 + x^3$$

 $u = 1 + x^3$ C) $\frac{1}{3} \int_0^4 \sqrt{u} \ du$

$$\frac{du}{3} = x^2 dx$$

- 1. Bloom's taxonomy?
- 2. Distractors?
- 3. What type of discussion would this question engender?

Better seasons example

What would happen to the seasons if the earth's orbit around the sun was made a perfect circle (but nothing else changed)?

- A. There would be no seasons
- B. The seasons would remain pretty much as they are today
- Winter to spring would differ much less than now
- D. Winter to spring would differ much more than Much better question. Requires reasoning!

1. Bloom's taxonomy?

- 2. Distractors?
- 3. What type of discussion would this question engender?

Part D: Think about a topic you that you recently taught or learned. On your own, write a draft question that addresses one of the pedagogical goals from the Question Cycle (see last page). Include 3-4 plausible distractors.

Share your question with your group of three or a neighbor. Try to identify the Bloom's level and type of pedagogical goals in the question cycle of the question your neighbor provide. Part E: Write down the top three fears/challenges/barriers you think you will face in implementing peer-1 instruction in your future teaching: 1. 2. 3. Share with your group your concerns, and discuss strategies for overcoming them. We will share out at this point. Resources and credits below:

Question Cycle

Courtesy of Rosie Piller

Before Instruction

- - Why is it important to...?
 - What might we want to ...?
 - What kinds of things can go wrong?
- Help them discover information
 - What do we have to take into account when we...?
 - What needs to happen when you...?
 - Predict: Since X causes Y, what do you think will happen when...?
- Assess prior knowledge or provoke thinking/discussion
 - What do you think about...?
 - Would you/do you...?
 - What do you think will happen if...?

During Instruction

- Test knowledge of facts
 - What are the three types of...?
 - Can you define...?
- Test comprehension of concepts
 - Which statements support...?
 - What examples can you think of?
- Test applications of concepts
 - What would happen if...?
 - Which of the following are X?
- Help them analyze what they are learning
 - Based on the symptoms, what would you say is going on?
 - What is the relationship between...?
- Test their ability to evaluate
 - Here are two solutions. Which is more appropriate and why?
 - Which of these is more important?

- Provoke them to synthesize their understanding.
 - How would you test...?
 - Propose a way to...
- Elicit a misconception
 - Ask questions where a common student misconception will result in a particular response
- Exercise a skill
 - How would you...?
 - · What is the next step in this problem?

After Instruction

- Have students recap what they have learned
 - What steps did you go through to solve the problem?
 - What are the most important things to remember?
 - Exit poll: What did we learn today?
- Ask them to relate information to the big picture
 - How does this lead into the next topic?
- Demonstrate success and limits of understanding
 - Ask questions that students have built an understanding of during the class.
 - Ask questions that go beyond what was done in class

¹ Rosie Piller, Making Students Think: The Art of Questioning. Short papers published in: Computer Training & Support Conference, 1995; ISPI International Conferences, 1991 and 1996; ASTD National Conference on Technical & Skills Training, 1990. Related workshop description at http://www.educationexperts.net/mstworkshop.html.

Bloom's Taxonomy, left to right...

Knowledge	Comprehension	Application	Analysis	Evaluation	Synthesis
know define memorize list recall name relate	restate discuss describe recognize explain identify locate	translate interpret apply employ demonstrate dramatize practice illustrate operate	distinguish analyze differentiate calculate experiment compare contrast criticize solve examine	compose plan propose design assemble construct create design organize manage	judge appraise evaluate compare value select choose assess estimate measure

Bloom's Taxonomy "Revised" Key Words, Model Questions, & Instructional Strategies

Bloom's Taxonomy (1956) has stood the test of time. Recently Anderson & Krathwohl (2001) have proposed some minor changes to include the renaming and reordering of the taxonomy. This reference reflects those recommended changes.

I. REMEMBER (KNOWLEDGE)

(shallow processing: drawing out factual answers, testing recall and recognition)

Verbs for Objectives choose describe define identify label list locate match memorize name omit recite recognize select state	Model Questions Who? Where? Which One? What? How? What is the best one? Why? How much? When? What does It mean?	Instructional Strategies Highlighting Rehearsal Memorizing Mnemonics
---	---	--

II. UNDERSTAND (COMPREHENSION)

(translating, interpreting and extrapolating)

Verbs for Objectives	Model Questions	Instructional Strategies
classify	State in your own words.	Key examples
defend	Which are facts?	Emphasize connections
demonstrate	What does this mean?	Elaborate concepts
distinguish	Is this the same as?	Summarize
explain	Give an example.	Paraphrase
express	Select the best definition.	STUDENTS explain
extend	Condense this paragraph.	STUDENTS state the rule
give example	What would happen if?	"Why does this example?"

match What are they saying? paraphrase This represents represent What seems to be? restate Is it valid that? rewrite What seems likely? select Show in a graph, table. show Which statements support? summarize What restrictions would you add? tell translate	paraphrase represent restate rewrite select show summarize tell	This represents What seems to be? Is it valid that? What seems likely? Show in a graph, table. Which statements support?	create visual representations (concept maps, outlines, flow charts organizers, analogies, pro/con grids) PRO CON NOTE: The faculty member can show them, but they have to do it. Metaphors, rubrics, heuristics
--	--	--	--

III. APPLY

(Knowing when to apply; why to apply; and recognizing patterns of transfer to situations that are new, unfamiliar or have a new slant for students)

Verbs for Objectives apply	Model Questions Predict what would happen if	Instructional Strategies Modeling
dramatize explain generalize judge organize paint prepare produce select show	Apply Judge the effects What would result Tell what would happen Tell how, when, where, why Tell how much change there would be Identify the results of	"Mindful" practice – NOT just a "routine" practice Part and whole sequencing Authentic situations "Coached" practice Case studies Simulations Algorithms
sketch solve use		

IV. ANALYZE (breaking down into parts, forms)

Verbs for Objectives analyze categorize classify compare differentiate distinguish identify infer point out select subdivide survey	Model Questions What is the function of? What's fact? Opinion? What assumptions? What statement is relevant? What motive is there? Related to, extraneous to, not applicable. What conclusions? What does the author believe? What does the author assume? Make a distinction. State the point of view of What is the premise? State the point of view of What ideas apply? What ideas instify the conclusion?	Instructional Strategies Models of thinking Challenging assumptions Retrospective analysis Reflection through journaling Debates Discussions and other collaborating learning activities Decision-making situations
	What ideas apply? What ideas justify the conclusion? What's the relationship between?	

The least essential statements are What's the main idea? Theme? What inconsistencies, fallacies? What literary form is used? What persuasive technique? Implicit in the statement is . . .

V. EVALUATE (according to some set of criteria, and state why) **Verbs for Objectives Model Questions**

appraise judge criticize defend compare

What fallacies, consistencies, inconsistencies appear? Which is more important, moral, better, logical, valid, appropriate? Find the errors.

Instructional Strategies

Challenging assumptions

Journaling Debates

Discussions and other

collaborating learning activities Decision-making situations

VI. CREATE (SYNTHESIS)

(combining elements into a pattern not clearly there before)

Verbs for Objectives

choose combine compose construct create design develop do formulate hypothesize invent make

make up originate organize plan produce role play tell

Model Questions

How would you test. . .? Propose an alternative. Solve the following. How else would you . . .? State a rule.

Instructional Strategies

Modeling Challenging assumptions Reflection through journaling Debates

Discussions and other collaborating learning activities

Design

Decision-making situations

Web References:

- http://www.coun.uvic.ca/learn/program/hndouts/bloom.html
- http://www.fwl.org/edtech/blooms.html
- http://apu.edu/~bmccarty/curricula/mse592/intro/tsld006.htm
- http://152.30.11.86/deer/Houghton/learner/think/bloomsTaxonomy.html
- http://amath.colorado.edu/appm/courses/7400/1996Spr/bloom.html
- http://www.stedwards.edu/cte/bloomtax.htm
- http://quarles.unbc.edu/lsc/bloom.html
- http://www.wested.org/tie/dlrn/blooms.html
- http://www.bena.com/ewinters/bloom.html
- http://weber.u.washington.edu/~krumme/guides/bloom.html

Anderson, L. W. & Krathwohl, D. R. (2001). A Taxonomy for learning, teaching, and assessing.

Bloom, B. S. (Ed.). (1956). Taxonomy of educational objectives: The classification of educational goals, by a committee of college and university examiners. New York: Longmans.

John Maynard, University of Texas, Austin

Marilla Svinicki, University of Texas, Austin

Resources for Peer Instruction:

General resources:

http://www.cwsei.ubc.ca/resources/clickers.htm excellent site with access to many clicker resources.

http://www.colorado.edu/sei/fac-resources/workshops-clickers-materials.htm is a great resource for faculty on training to use clickers.

http://blog.peerinstruction.net/ is the official peer instruction site from Julie Schell.

https://www.peerinstruction.net/ is a network of peer instruction users.

http://blog.sciencegeekgirl.com/ is Stephanie Chasteen's site, with lots of info from her workshops on clickers and peer instruction.

http://cft.vanderbilt.edu/guides-sub-pages/clickers/ Derek Bruff's page at Vanderbilt on Clickers and how to use them.

http://www.peerinstruction4cs.org/ Peer instruction for computer science.

https://ctd.ucsd.edu/services/peer-instruction-with-clickers/ Peter Newbury and UCSD's site on peer instruction using clickers. Like CWSEI, nice videos on peer instruction.

<u>http://perusersguide.org/guides/Section.cfm?G=Peer_Instruction&S=Resources</u> Good site on peer instruction in physics.

Example clicker questions:

http://www.cwsei.ubc.ca/resources/files/ClickerWorkshopMaterials/Example-questions-big-v3.pptx is a great resource of example clicker questions from Stephanie Chasteen.

http://www.cwsei.ubc.ca/resources/clickers.htm#questions has links to a wide variety of clicker question repositories from CU Boulder and UBC Science Education Institute.

<u>http://www.colorado.edu/physics/EducationIssues/cts/index.htm</u> lots and lots of physics concept tests (clicker questions).

<u>http://www.physics.umd.edu/perg/role/PIProbs/ProbSubjs.htm</u> more physics clicker questions from Joe Reddish at UMD.